
Abstract. Using a partially compressible continuum
solvation model, we have shown that solvent compres-
sion in just the ®rst two solvation shells (or thereabouts)
is all that is required to gain the bulk of the compression-
induced enhancement to the solvation energy of ions in
supercritical water. This result is found to hold even
when the direct, equilibrium solvent-solute cluster
involves well over a hundred solvent molecules. We
argue that, for charge variation reactions in supercritical
water, the observed short-range behavior of the com-
pression-induced solvation free energy precludes the
existence of any anomalously large nonequilibrium
solvent e�ects which might be expected on the basis of
the very large size of the equilibrium clusters.
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1 Introduction

It has been well established that solvent-solute clustering
plays an important role in the energetics of solvation in
supercritical ¯uids (SCFs) in their compressible regimes
[1±15]. It has also been demonstrated that for reactive
solutes in such dilute SCF solutions the degree of solvent
clustering under equilibrium conditions can be strongly
reaction-path dependent �3; 4; 16�. We therefore ask
whether nonequilibrium solvent e�ects associated with
reaction-path-dependent solvent clustering should be
expected in SCFs. In this work we explore the e�ects of
solvent compression on solvation in order to shed light
on this question.

In general, the e�ect of a solvent on a solute's reac-
tion rate can be broken down into two components:
the equilibrium and the nonequilibrium solvent e�ects
[17±21]. The equilibrium e�ects arise when the solute's
solvation free energy varies along the reaction path,

causing the solution-phase reaction free energy pro®le to
di�er from that in the gas phase. However, if the equi-
librium solvent con®guration varies substantially along
the solute reaction path, the associated solvent re-
organizational motion must occur on the time scale of
the solute reaction if the aforementioned equilibrium
picture is to be valid. When, instead, the solvent re-
organization is very slow, this reorganization process
may slow down or even control the solute reaction, and
such e�ects are known as nonequilibrium solvent e�ects.

Extensive e�ort has been directed towards ®nding
and understanding such nonequilibrium solvent e�ects
on solute reactions [17±21]. In particular, it was expected
that large nonequilibrium e�ects would be observed for
charge transfer or charge separation reactions in aqu-
eous solution, as a result of the slow rotational re-
orientation time for water. It turns out, however, that
the dipolar rearrangement of the solvent necessitated by
such charge redistribution in the solute can be largely
accomplished through small librational motions of water
molecules in the ®rst solvation shell. As a result, the time
scale associated with the requisite solvent rearrange-
ments is much faster than expected, and the observed
nonequilibrium e�ects were correspondingly less im-
portant than expected [22].

The discovery of reaction-path-dependent solvent
clustering in dilute SCFs raises a similar question about
whether we should expect large nonequilibrium solvent
e�ects associated with this phenomena. On the one
hand, very large solvent clusters are known to form
around solutes under equilibrium conditions in SCFs,
and the formation of such large clusters, which requires
the collective motion of many solvent molecules (see
below), is expected to be a very slow process. Conse-
quently, quite large nonequilibrium e�ects might be ex-
pected for reactions in which such clusters need to be
formed as the reaction proceeds in order to provide
equilibrium solvation of the products. Yet, as was the
case in ambient aqueous solution, this slow time scale
event will only give rise to a large nonequilibrium e�ect
if the full motion is required for reaction. That is, if the
full cluster must be created to e�ectively solvate the
products, nonequilibrium e�ects would be expected toCorrespondence to: S. Tucker
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be unusually large, but if the bulk of the solvation energy
can be attained via some smaller, less time-consuming
process ± such as density enhancement in just the ®rst
one or two solvation shells ± then no unusually large
nonequilibrium e�ects would be expected.

Herein we examine the cluster- (or compression-) in-
duced enhancement of the solvation energy of a charged
solute in supercritical water (SCW). In particular, we
determine the degree to which the full equilibrium clus-
ter must be formed or, more precisely, the range over
which such clustering must occur, for this enhancement
in the solvation energy to be obtained.

2 Background

In dilute SCFs, there are two distinct solvent-solute
clustering, or density-enhancement, e�ects, and it is
necessary to be explicit about which of these behaviors,
if not both, are being considered or probed in a given
calculation or experiment [23±30]. The distinction
between these two e�ects has been most clearly given
by Chialvo and Cummings [23], who showed that, for an
in®nitely dilute solute in an SCF solvent, the partial
molar volume ± which measures the solvent-solute
density enhancement ± can be decomposed into a sum
of two components corresponding to the two e�ects.

The ®rst, or indirect, component is proportional to
jT c12, where jT is the SCFs isothermal compressibility
and c12 is the direct solvent-solute correlation function.
This indirect component, then, diverges as does the
compressibility when the critical point of the SCF is
approached from above, re¯ecting the critical behavior
of the pure solvent. It is this indirect, divergent com-
ponent which is responsible for the extremely large
partial molar volumes observed in SCFs near their cri-
tical points. While such partial molar volumes indicate
that the indirect solvent compression e�ect involves
hundreds of molecules, it has already been shown that
this `critical condensation' does not contribute to the
solute's free energy of solvation, which itself depends
only on the direct correlation function, and not on the
diverging compressibility [23,25,26]. The insensitivity of
the solvation energy to the indirect compression e�ect
re¯ects the fact that these e�ects, i.e. the correlated long-
range, near-critical density ¯uctuations of the solvent,
occur outside of the range of the solute-solvent interac-
tion potential and thus do not alter the energetics. It
follows that such ¯uctuations will not generate none-
quilibrium solvent e�ects on reacting solutes, and, as
such, we do not consider this indirect component of the
solvent density enhancement further.

The second, or direct, component of the partial molar
volume is proportional to just the direct solvent-solute
correlation function c12, and, as such, it remains ®nite as
the critical point is approached and the SCFs correlation
length diverges �23�. This direct component re¯ects sol-
vent-solute clustering which arises as a direct result of an
attractive solvent-solute interaction potential and ex-
tends only over the range of this potential. Note that the
direct e�ect is frequently termed the `short-range e�ect,'

because its range remains ®nite as the critical point of
the SCF solvent is approached, in contrast to the di-
vergent range of the indirect e�ect. However, when the
solute-solvent interactions involve long-range coulombic
forces, the range of the direct, `short-range' compression
e�ect can, in fact, be quite large (although still ®nite). As
we shall show by example below, the number of solvent
molecules involved in such direct compression e�ects can
be well over a hundred. We therefore examine the
question of whether large, direct solvent-solute clusters
are likely to give rise to nonequilibrium solvent e�ects.
We do so by determining the range over which direct
compression e�ects contribute substantially to the sol-
vation energy.

There have been two previous studies in which the
range dependence of thermodynamic quantities related
to the solvation free energy was examined in
SCFs [25,26]. Although neither of these works examine
the particular question of interest herein, that is, over
what range the direct compression contributes to these
solvation quantities, the conclusions therein are of some
interest. Munoz and Chimowitz �25� considered the re-
sidual chemical potential of a Lennard-Jones solute, lr,
in a supercritical Lennard-Jones ¯uid. Using that this
chemical potential can be cast as an integral over all
space, i.e. lr �

R1
0 f12�r� dr; these authors found that

the partially integrated quantity
R R
0 f12�r� dr attains 90%

of the full value of the chemical potential lr within a
range of about two solvation shells. This `short-range'
behavior of the residual solute chemical potential arises
directly from the short-range nature of the Lennard-
Jones solvent-solute interaction potential, as can be seen
because the r-dependence of the integrand f12�r� is de-
termined by an overlap of the radial distribution func-
tion �31� with the intermolecular potential function and
thus does not exceed the range of this potential. Un-
fortunately, the authors did not separate out the com-
pression-induced part of the chemical potential; nor did
they consider the range of the direct component of the
density enhancement. We are thus unable to assess the
range over which compression a�ects the chemical po-
tential; however, the observed result of two solvation
shells clearly provides an outer bound to this range.

Tom and Debenedetti [26] considered the range de-
pendence of the solute fugacity coe�cient, also for a
supercritical Lennard-Jones solute-solvent system. These
authors found results similar to those of Munoz and
Chimowitz, in that partial integration of the fugacity-
coe�cient integrand demonstrated that 98% of the value
of the fugacity coe�cient is attained within about three
solvation shells, again establishing an outer bound on
the region in which compression may be important.
While these authors did look at the range dependence of
the solvent density enhancement, they did not separate
out the nondivergent, direct component of this en-
hancement in which we are interested. Thus, both of
these studies demonstrate that short-range properties
determine solvation. Yet, both studies considered only
short-range, Lennard-Jones interaction potentials. As
such, they provide no predictions regarding the range
behavior of the solvation properties when long-range
coulombic interactions are involved. In particular, they
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leave completely open the question of the range over
which direct compression will alter the solvation.

3 Methods

We use a completely compressible (CC) continuum
electrostatic model, described elsewhere [4,32], to
represent a charged solute/SCW system. From this
model we can extract both the structureless equilibrium
solvent density distribution around the solute, q�r�; and
the equilibrium Gibbs free energy of solvation DGCC �3�.
The compression-induced part of this solvation energy,
DGc; is found by comparing the solvation energy
evaluated from the CC model, DGCC; with that
evaluated from an incompressible (IC) continuum
electrostatic model [33,34], DGIC; i.e. DGc � DGCCÿ
DGIC: In order to elucidate the range over which solvent
compression plays an instrumental role in generating the
compression-induced component of the solvation free
energy, DGc; we introduce a partially compressible (PC)
continuum solvation model as described below.

In the IC model, the solute is represented by a set of
point charges in a vacuum cavity de®ned by interlocking
atomic spheres, and the solvent is represented as a di-
electric medium characterized by a dielectric constant �IC
everywhere outside of the solute cavity. The CC model
di�ers from the IC model only in that the dielectric
`constant' of the ¯uid outside of the solute cavity, �CC�r�;
is allowed to vary locally according to the solvent den-
sity enhancements (solvent compression) induced by the
solute-generated electric ®eld. Note that the ®nal electric
®eld in the CC case, ECC, will di�er from that in the IC
case, EIC; because in the CC case the ®nal ®eld ECC must
be self-consistent with the ®eld-dependent dielectric
constant, �CC�ECC�r��. In the PC model, solvent com-
pression, and thus a locally varying dielectric `constant,'
is allowed only in a shell of thickness a around each of
the interlocking spheres de®ning the solute cavity. In the
cases studied herein, all of the atomic spheres have the
same radii, rc, and thus the size of the compressible shell
is denoted by the outer radius of the shell, R � rc � a:
Note that since the region outside of the compressible
shell is treated as an incompressible medium with di-
electric constant �IC; the PC model reduces to the IC
model limit when R � rc and to the CC model limit when
R!1:

The compression-induced solvation energy in the PC
model depends upon the radius of the compressible shell,
that is, DGc�R� � GPC�R� ÿ GIC; and has the limiting
values DGc�R � rc� � 0 and DGc�R!1� � DGc for the
CC model. The reader should keep in mind that, in
contrast to earlier studies [25,26], this R-dependence
represents successive, complete calculations of the total
solvation energy with di�ering ranges of allowed com-
pression, and not simply the distance dependence of the
integrated free energy density in a single CC calculation.
These two quantities are in general not equivalent, be-
cause in the CC case, compression outside of the shell R
can alter the electric ®eld, and thus the energy density,
within the shell. Additionally, the size of the compres-
sible shell alters the value of the ®eld in the IC region

outside of the shell. As a result, the integrated energy
density from a single CC calculation would not represent
the case of partial compression in which we are inter-
ested (and which is represented by the PC model).

In addition to the compression-induced solvation
energy, we consider the excess number of solvent mole-
cules around the solute, de®ned as

Nx �
Z 1

rc
qx�r� ÿ qb� �dr �1�

where qb is the bulk density, and qx�r� is the equilibrium
solvent density distribution evaluated with solvent model
x, where x is IC, CC or PC(R), and R denotes the outer
radius of the compressible shell. Again, NPC�R � rc� � 0;
which is the IC result, NPC�R!1� � NCC; which is the
excess number in the CC model, and the R-dependence
represents successive, complete calculations of the total
excess number when di�erent ranges of compression are
allowed.

The basic equations for the free energies and densities
are presented brie¯y below [3,4,32,35±37], as these rela-
tions will aid in the interpretation of the results. The
electrostatic work, and thus the free energy, of charging
a solute in the presence of a dielectric ¯uid is given by the
sum of the work required to create the ®nal ®eld in va-
cuo plus the work done on the ¯uid during the charging
process. The ®nal ®eld, Ex; where x denotes the IC, CC
or PC(R) model, is given by the solution of Poisson's
equation with self-consistent values for the ®eld-depen-
dent local dielectric constant �x�Exr�; within the con-
straints of model x. The free energy of charging the
solute in the presence of a model x solvent is then written
in terms of the ®nal ®eld Ex as [3,4,32,35]

Gx �
Z

1

2
�0E2

xdr�
Z

we;x dr: �2�

Note that the solvation energy for model x is simply
DGx � Gx ÿ G0; where G0 is the work of charging the
solute in a vacuum.

The second term in Eq. (2) is a sum over the work,
we;x; done on each volume element of the ¯uid outside of
the solute cavity. This work is given by [32,35]

we; x�r� �
Z Ex�r�

0

�0E0d ��x�E0� ÿ 1�E0� � ; �3�

where the dependence of the local dielectric constant on
the local ®eld is shown explicitly. In the IC case, �IC is a
constant, and this work term reduces to the familiar
result,

we;IC � 1

2
�0��IC ÿ 1�E2

IC : �4�

Finally, in the CC and PC models, the local density qx�r�
is determined by the local ®eld Ex�r� according to
integration of the expression [3,37]

dqx �
1

2
�0q

2
xjT

@�

@q

� �
Ex;T

d�E2
x� �5�
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where the compressibility and the density dependence of
the dielectric constant are found as described elsewhere
[3]. This latter relation also allows direct evaluation of
�x�r� from qx�r�.

4 Models

We consider two simple model solutes, a monatomic ion
represented by a single unit point charge in a cavity of
radius rc � 2 AÊ , and a diatomic ion represented by two
half-unit partial charges in a cavity de®ned by two
overlapping spheres of radii rc � 2 AÊ separated by a
distance 4 AÊ . In both cases the cavity dielectric constant
is taken to be 1. Note that for the monatomic ion, the
CC and PC models were solved using the method of
Wood et al. �32; 35�. For the diatomic ion, these models
were solved using the numerical grid treatment of Luo
and Tucker �4� for the solute plus solvent system out to a
radius of 8 AÊ . Boundary conditions for this inner grid
were determined by self-consistent compressible con-
tinuum calculations for the outer solvent sphere, which
were computed using the method of Wood et al. �32; 35�.

The solvation of these model ions at the three SCW
sate points listed in Table 1 was considered. States A and
B were chosen to have the same bulk dielectric constant
but di�erent compressibilities, with state A being the
more compressible state. State C has a lower density and
a lower bulk dielectric constant than either state A or
state B, and is even less compressible that state B.

5 Results and discussion

5.1 CC model

The CC continuum solvation model is used to compute
the equilibrium solvent density distribution, which is
structureless in the present model, around each of the
monatomic and diatomic ion solutes for each of the
three SCW states described above. The excess number of
water molecules around the solute is in each case
computed from the corresponding density distribution
via Eq. (1), and these excess numbers are shown in
Table 2. Considering the monatomic ion, one sees that,
as expected, NCC increases dramatically with increasing
solvent compressibility, having values of 15, 18 and 126,
for reduced compressibilities of 1.34, 1.92 and 14.7 for
states C, B and A, respectively.

Comparing the numbers of molecules involved in the
solvent compression for the monatomic and diatomic
solutes, one ®nds that NCC is smaller for the diatomic ion

under all conditions. This result is expected, because the
electric ®eld generated by two partial charges is every-
where smaller than that due to a single point charge,
thus leading to less electrostriction. Notice, however,
that the decrease in NCC between the two solute models
is much greater for the more compressible state A, for
which NCC drops from 126 to 64, than for states B and
C, which drop from 18 to 16 and 15 to 12, respectively.
That NCC is so dramatically di�erent for these two sol-
vent models in SCW at state A re¯ects the sensitivity of
the local solvent density to small variations in the electric
®eld that arises from the very large compressibility of
this state.

The equilibrium free energy of solvation in the CC
model, DGCC, is the solvation energy that would be
achieved if the solvent were allowed to reorganize ± i.e.
compress ± to its equilibrium density distribution. These
solvation energies are shown along with the solvation
energies computed assuming no compression, DGIC

(Eqs. 2 and 4), in Table 2. Notice ®rst that the IC model
solvation free energies are the same for states A and B,
because these states have the same bulk dielectric con-
stant, �IC � 4:1. The magnitude of the IC solvation
energies for state C, which has �IC � 2:24, is corre-
spondingly smaller. When complete compression is al-
lowed, the solvation becomes more favorable, such that
the magnitude of DGCC exceeds that of DGIC in all cases.
The extra, compression-induced solvation energies, DGc,
are also given in Table 2.

Comparison of DGc for states A and B yields the ex-
pected result that the compression e�ect on the solvation
energy is greater for the more compressible state A,
consistent with the larger NCC values observed for this
state. However, the compression e�ects on the free en-
ergy of the least compressible state C are noticeably
larger than those for states A and B. This somewhat
puzzling result arises because the dependence of the sol-
vation energy on the dielectric constant of the solvent is
highly nonlinear, as exempli®ed by the factor �1ÿ �1=���
in the Born expression for the solvation energy of a point
charge. Thus, if compression were to change the e�ective
dielectric constant from 2 to 3, this prefactor, and thus
the magnitude of DG, would increase by a factor of 4/3,
whereas if the change in the dielectric constant were from
4 to 5, the magnitude of DG would increase only by a
factor of 16/15. Consequently, if two states of di�erent
bulk dielectric constant, such as states B and C, show
similar compression, and thus a similar change in the
bulk dielectric constant (because the density dependence
of the dielectric constant is fairly linear) �38�, the state
with the lower initial dielectric constant will yield a
greater compression-induced stabilization of the solute.
In the case of states A and C, this non-linear dielectric

Table 1. SCW states studieda

State P (MPa) T (K) q(g cm)3) T/Tc q=qc � jT =jIGb

T

A 23.4 653.0 0.250 1.01 0.77 4.11 14.7
B 44.3 740.0 0.275 1.14 0.85 4.11 1.92
C 45.8 841.1 0.162 1.30 0.50 2.24 1.34

aAll quantities from Ref. [39] except � from Ref. [38]
bjIG

T is the compressibility of an ideal gas under the same
thermodynamic conditions

Table 2. Free energies of solvation (in kcal/mol)

State Monatomic Diatomic
DGIC DGCC DGc NCC DGIC DGCC DGc NCC

A )62.8 )74.2 )11.4 126 )47.3 )54.3 )7.1 64
B )62.8 )71.6 )8.8 18 )47.3 )53.7 )6.5 16
C )45.9 )62.6 )16.7 15 )34.4 )44.4 )10.1 12
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e�ect on DG is su�cient to counteract, and in fact exceed,
the e�ect of the much greater compression which occurs
in state A. Lastly, note that for each of the three states,
DGc is of smaller magnitude for the diatomic ion than for
the monatomic ion, consistent with the reduced ®eld and
lesser compression of the former model. Again, the
change in DGc between the two models is largest at state
C, as a result of the nonlinear dependence of the solva-
tion energies on the dielectric constant.

5.2 PC model

5.2.1 Compressible-range dependence

The PC continuum model, PC(R), is used to compute
the solvation free energy DGPC�R� (Eq. 2) and solvent
density distribution, summarized by the excess number
of solvent molecules NPC�R� (Eq. 1), for a solvent which
may compress out to distances R away from the solute
center, but which is incompressible beyond this range.
The PC model thus mimics a short-time, nonequilibrium
situation in which only nearby solvent molecules have
had the opportunity to readjust to a newly created solute
charge distribution. We ask, then, what percent of the
complete, equilibrium compression-induced solvation
energy, DGc, is achieved through such partial compres-
sion. Towards this end, we consider the compressible-
range-dependent quantity,

Rel DGc�R� � DGPC�R� ÿ DGIC

DGPC�R!1� ÿ DGIC
; �6�

which is zero in the IC limit �R � rc� and one in the CC
limit �R!1�. Note that the denominator is simply DGc

for the CC model. The compressible-range dependence
of the relative compression-induced stabilization,
Rel DGc�R�, is shown in Fig. 1a for all three SCW states
for the monatomic ion solute; results for the diatomic
ion solute are qualitatively similar and are therefore not
shown. For comparison, we show in Fig. 1b the
compressible-range dependence of the compression, or
rather, of the relative number of excess molecules,

Rel N�R� � NPC�R�
NPC�R!1� ; �7�

which becomes zero in the IC limit, because NIC � 0, and
one in the CC limit. The diatomic ion results are again
qualitatively similar to the monatomic ion results which
are shown.

From Fig. 1 a and b it is immediately evident that the
compressible-range required to attain the bulk of the
compression-induced solvation energy is much shorter
than that required to attain complete compression, i.e. to
attain the CC value for N . Said another way, we ®nd
that a small fraction of the complete equilibrium com-
pression contributes the bulk of the complete compres-
sion-induced solvation energy. For example, for state A,
values of Rel N�R � 6AÊ � � 0:12 and Rel DGc�R �
6AÊ � � 0:83 mean that NPC�R � 6AÊ � � 15 of the com-
plete NCC � 126 excess water molecules will yield 83%,
or ÿ9:5 kcal/mol, of the complete compression-induced

solvation energy of DGc � ÿ11:4 kcal/mol. Note that the
bulk density of SCW in state A is only 0.25 g cmÿ3 and
that even with the addition of 15 water molecules to the
6AÊ shell, the local density remains below the liquid
density of 1.0 g cmÿ3.

Comparison of the compressible-range dependences
of the three SCW states shows that, while the range over
which compression contributes to DGc increases for in-
creasingly compressible SCW states, this range increases
much more slowly than does the range over which
compression occurs, which increases dramatically. This
increase is illustrated by SCW state A, for which the
range of compression exceeds the 25 AÊ shown. This is in
contrast with the compression-induced solvation energy,
which is dominated by ®rst and second solvation shell
e�ects for all three SCW states considered. That is, if
compression is allowed only in a 4 AÊ shell around the
solute �R � 6AÊ ) ± a region corresponding roughly to the
range of the ®rst two solvation shells of water ± 83%,
93% and 95% of the complete compression-induced
solvation energy DGc is achieved in SCW states A, B and

Fig. 1a,b. The range-dependence of a the relative compression-
induced component of the solvation free energy and b the relative
excess number of molecules for states A (solid ), B (dashed ) and C
(dot-dashed )
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C, respectively. First solvation shell e�ects alone account
for 65%, 79% and 80% of the complete DGc, despite
representing only 6%, 30% and 55% of the complete
number of excess water molecules, respectively. We
conclude that even though the size of the equilibrium,
direct solvent-solute clusters may grow dramatically
with solvent compressibility, the e�ect of this compres-
sion on the solvation energetics will be controlled by the
compression of a relatively small number of solvent
molecules in the ®rst few solvation shells. As a result, it is
expected that for charge variation reactions in SCW,
equilibrium solvation along the reaction path can be
accomplished through local solvent compression in the
®rst few solvation shells, and, therefore, that anom-
alously large solvent e�ects associated with a need to
form extremely large solvent clusters as the reaction
proceeds will not be observed.

5.2.2 Short-ranged nature of DGc

In this section we show, qualitatively, that the very
di�erent compressible-range �R� dependences observed
for the relative compression-induced solvation energy,
Rel DGc�R�, and the relative excess number of solvent
molecules, Rel N�r�, arise as a result of signi®cant
di�erences in the electric ®eld dependences of these
quantities. To begin, we recognize that the changes
which occur in Rel DGc�R� and Rel N�R� when addi-
tional compression is allowed in the region between R
and R� dR arise primarily from contributions to these
quantities from the newly compressed region, because
there was no contribution from this region when it was
incompressible. A secondary contribution arises because
the additional compression can change the electric ®eld
over the entire ¯uid, thus altering the contributions of
other volume elements of the ¯uid. If we ignore this
secondary e�ect, the compressible-range �R� depen-
dences of DGPC and NPC in Eqs. (6) and (7) become
simply the radial dependence (r) in the CC model, of
the contribution of each volume element to the total
quantities DGc and NCC. The problem is thus reduced to
determining the r-dependence of the compression-
induced solvation-energy-density, Dgc, and of the solvent
density, q. Note that the r-dependence of both Dgc and q
originates from their dependence on the local electric
®eld E�r�, and it is therefore instructive to consider
the electric-®eld dependences of these quantities, i.e.
Dgc�ECC�r�� and q�ECC�r��. In what follows, we make
this comparison for the case of the monatomic ion.

The ®eld dependence of the solvent density in the CC
model, q�ECC�, where ECC is the local ®eld in this model,
is given by integration of Eq. (5) from zero to ECC. Note
that the maximum ®eld strength considered for each
SCW state is the value attained at the solute cavity
boundary. The ®eld-dependent densities for the mona-
tomic ion in SCW states A and B are shown in Fig. 2a.
One sees that q�ECC� are highly nonlinear functions
characterized by a rapid rise in density. The ®eld
strength at which this rapid rise in density occurs is seen
to depend upon the compressibility of the SCW state,
occurring at weaker ®eld for the more compressible
state.

The E-®eld dependence of the compression-induced
component of the solvation free energy density,
Dgc�r� � gCC�r� ÿ gIC�r�, where gx�r� is the appropriate
integrand of Eq. (2), must be considered in comparison.
Explicitly,

Dgc � 1

2
�0E2

CC � we;CC�ECC� ÿ 1

2
�0E2

IC ÿ we;IC�EIC�; �8�
where ECC and EIC are the E-®elds at r in the CC and IC
models, respectively. In order to compare the energy
density to the solvent density (Fig. 1a), Dgc must be
written in terms of the ®eld variable for the CC model,
ECC. In general, the ®eld at r in the IC model can be
related to the ®eld at r in the CC model by some function
c�r�, such that

EIC�r� � c�r�ECC�r�: �9�
For the speci®c case of a point charge, the function c�r�
depends only on the local ®eld at r, such that Eq. (9)
becomes simply

Fig. 2a,b. The E-®eld dependence of a the solvent density and b the
compression-induced solvation energy density for states A (solid ) and
B (dashed )
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EIC � c�ECC�ECC �10�
where

c�ECC� � �CC�ECC�
�IC

: �11�

As a result, the ®eld dependence of the energy density
becomes (with Eq. 4)

Dgc � 1

2
�0E2

CC � we;CC�ECC� ÿ 1

2
�0�ICc2E2

CC: �12�

By realizing that we;CC can be approximately described
by an equation of the form of Eq. (4) with an e�ective
dielectric constant, one can see that, within a scaling
factor, all terms in Dgc go as O�E2

CC�, which is a very
di�erent ®eld dependence than that exhibited by the
solvent density q�ECC�.

In Fig. 2b, Dgc�ECC� is shown for comparison with
q�ECC� in Fig. 2a. Clearly the compression-induced
solvation energy density falls o� rapidly with decreasing
®eld strength. In contrast the solvent density remains
substantially enhanced to much lower ®eld strengths,
particularly for the most compressible state A. Conse-
quently, in regions very near the solute where ®eld
strengths are strong, there is substantial compression
�q�ECC� > qb�, and this compression has a noticeable
e�ect on the solvation free energy density �Dgc 6� 0�.
Away from the solute, weak ®elds may still cause sub-
stantial compression �q�ECC� > qb�, but this compres-
sion has little e�ect on the free energy density �Dgc � 0�.
Comparison of SCW states A and B shows that this
e�ect is magni®ed as the compressibility increases and
even weaker ®elds are able to induce density enhance-
ments. And, because the electric ®eld falls o� with dis-
tance only as O�rÿ2�, the spatial range over which the
density enhancement is important but the free-energy
density enhancement is not can be quite large, as was
observed in Fig. 1.

Finally, q�ECC� and Dgc�ECC� for the monatomic ion
in SCW state C are shown in Fig. 3. Note that for this
case the nonlinear behavior of q�ECC� occurs at su�-
ciently high ®eld strengths that it noticeably alters the
quadratic behavior of Dgc�ECC� through its e�ect on
c�ECC� and we;CC�ECC�. This contrasts with the results
for SCW states A and B, in which rapid changes in
q�ECC� occur at smaller ®elds and thus do not noticeably
alter the behavior of Dgc�ECC�. Additionally, this late
rise in q�ECC� means that large ®eld strengths are re-
quired to cause compression, as well as to alter the sol-
vation energy density. Thus, as the compressibility of the
¯uid decreases, the range over which there is substantial
compression shrinks down towards the range over which
the compression-induced solvation energy density is
a�ected.

6 Conclusions

A partially compressible continuum solvation model was
used to explore the compressible-range dependence of
the compression-induced solvation free energy for model

ions in SCW under various conditions. It was found that
the range over which solvent compression a�ects the
solvation free energy can be substantially smaller than
the range of the compression itself. This result follows
from the fact that, for highly compressible solvents,
weak ®elds far from the solute ion can induce substantial
solvent density enhancements, whereas the stronger
®elds close to the solute ion are required to enhance
signi®cantly the solvation energy density, which grows in
only as the ®eld squared. In fact, for all cases considered,
the compression-induced solvation free energy is largely
determined by compression within the ®rst two solvation
shells. Thus, in spite of the very large numbers of solvent
molecules which may be involved in the equilibrium,
direct solvent-solute clusters (often called `short-range'
density enhancement e�ects), only a small number of
these molecules are actually required to achieve near
equilibrium-solvation energetics. We therefore conclude
that anomalously large nonequilibrium solvation e�ects,
which might be expected on the basis of the very large
size of the equilibrium clusters, are not likely to occur in
charge-variation reactions in SCW.

Fig. 3a,b. Same as Fig. 2, except for state C
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